

International Lean Six Sigma Institute

The 7 Basic Tools of Six Sigma

(7 Quality Tools)

Where did the Basic Seven come from?

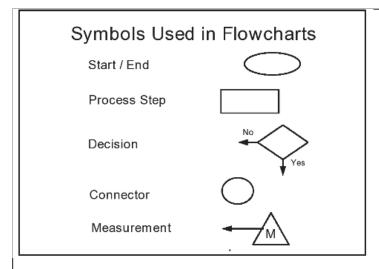
Kaoru Ishikawa (1915 - 1989)

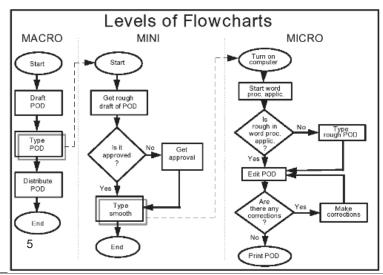
- University of Tokoyo, Japan
- Translated and Integrated the teachings of w.Edwards Deming and Joseph Juran into the Japanese manufacturing culture.
- Known for "Democratizing Statistics"
- The Basic Seven Tools made statistical analysis less complicated for the average² person

What Is a Flowchart?

A diagram that uses *graphic symbols* to depict the *nature* and *flow* of the steps in a process.

Benefits of Using Flowcharts


- Promote process understanding
- Provide tool for training
- Identify problem areas and improvement opportunities


" Draw a flowchart for whatever you do. Until you do, you do not know what you are doing, you just have a job."

-- Dr. W. Edwards Deming.

Flowchart

4

Flowchart

Keys to Success

- Start with the big picture
- Observe the current process
- Record process steps
- Arrange the sequence of steps
- Draw the Flowchart

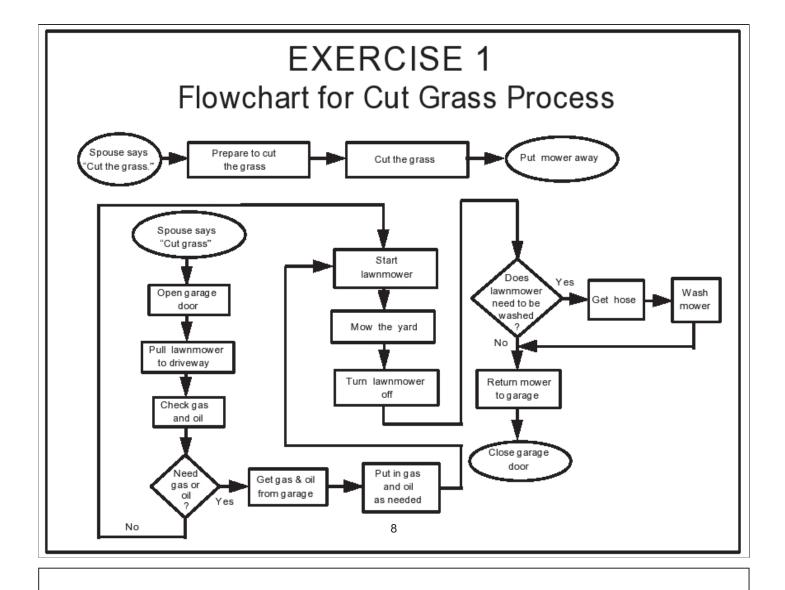
Flowchart

6

Interpreting Your Flowchart

- · Determine who is involved
- · Form theories about root causes
- Identify ways to simplify and refine
- · Determine how to implement changes
- Locate cost-added-only steps
- · Provide training

Interpretation Steps


- Step 1 Examine each process step

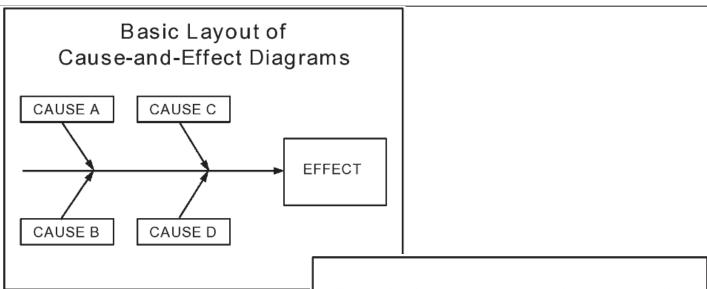
 Bottlenecks? Weak links? Poorly defined steps? Cost-added-only steps?
- Step 2 Examine each decision symbol Can this step be eliminated?
- Step 3 Examine each rework loop

 Can it be shortened or eliminated?
- Step 4 Examine each activity symbol

 Does the step add value for the end-user?

Flowchart

What Is a Cause and Effect Diagram?

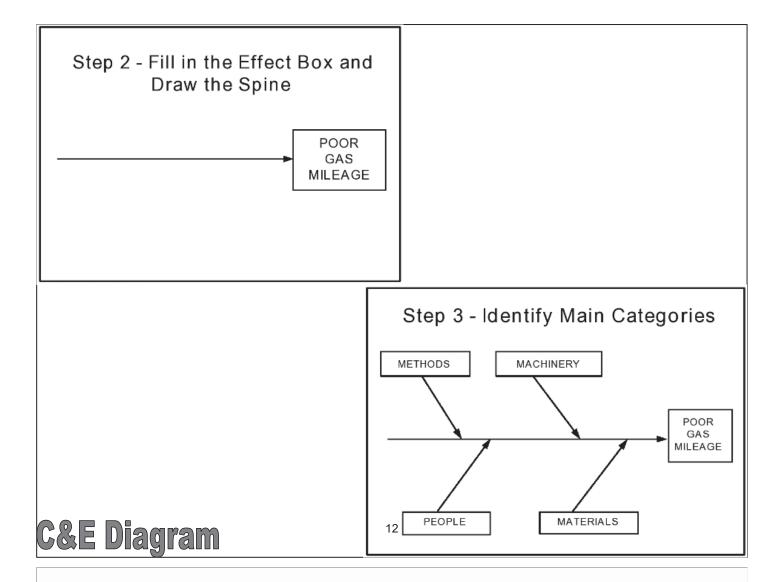

A graphic tool that helps identify, sort, and display possible causes of a problem or quality characteristic.

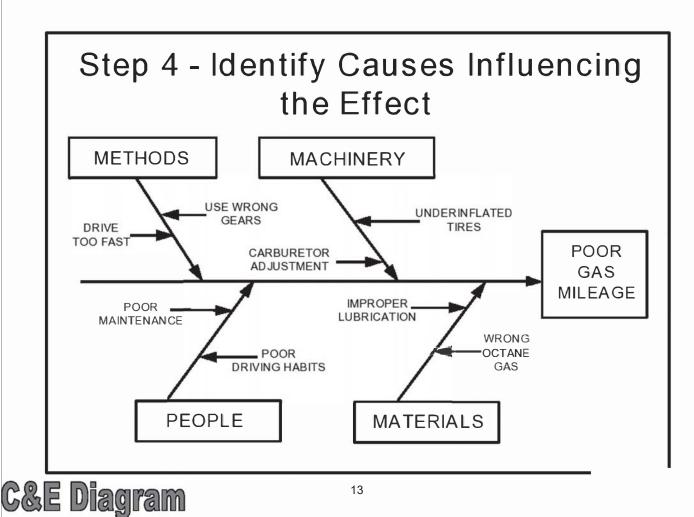
Benefits of Using a Cause-and-Effect Diagram

- Helps determine root causes
- Encourages group participation
- Uses an orderly, easy-to-read format
- Indicates possible causes of variation
- Increases process knowledge
- Identifies areas for collecting data

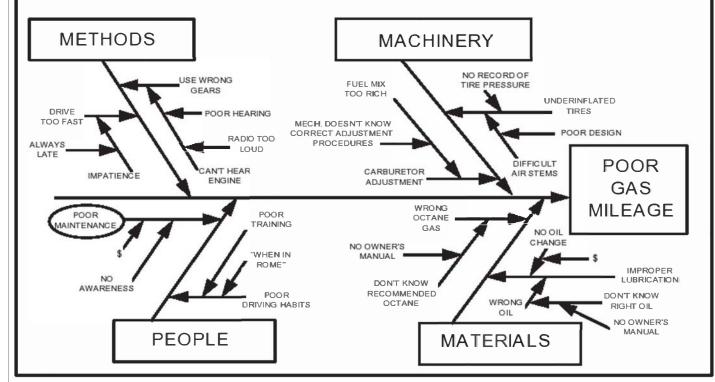
C&E Diagram

10

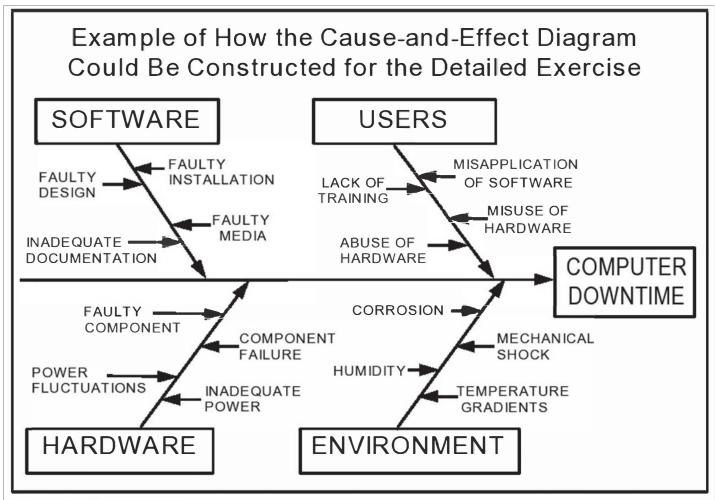



Step 1 - Identify and Define the Effect

- Decide on the effect to examine
- · Use Operational Definitions
- Phrase effect as
 - > positive (an objective) or
 - > negative (a problem)


C&E Diagram

11



Step 5 - Add Detailed Levels Step 6 - Analyze the Diagram

C&E Diagram

14

C&E Diagram

Data Collection

- Where
- What
- Who
- How

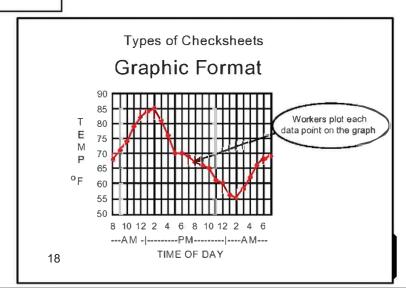
Check Sheet

16

Uses for Checksheets

- · Record data for further analysis
- · Provide historical record
- · Introduce Data Collection methods

Shifts

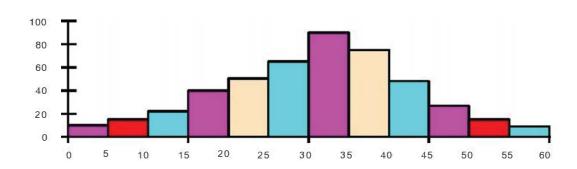

Defect Type

V V V	1111	$\sqrt{}$	V V V
V V	V V V		
	V V V V		V V V
	V V	$\sqrt{}$	

Check Sheet

Types of Checksheets Tabular Format

JULY 94								
DEFECT	12	13	14	15	16	17	18	TOTAL
WRONG NSN	=	_	=		ı			8
FAULTY MATERIAL	-	П		-		1		5
PMS NOT DONE	=	=	=		1	III	=	16
INSTALL PROBLEMS				1		1		2



Check Sheet

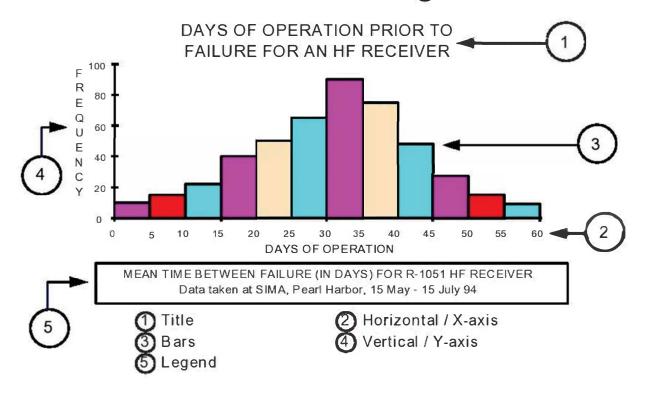
Making a Useful Checksheet

- Tailored for specific purpose
- Workers help develop form
- Columns labeled clearly
- User-friendly format

What Is a Histogram?

- · A bar graph that shows the distribution of data
- · A snapshot of data taken from a process

Histogram


20

When Are Histograms Used?

- Summarize large data sets graphically
- Compare measurements to specifications
- Communicate information to the team
- Assist in decision making

Parts of a Histogram

Histogram

22

Constructing a Histogram

- Step 1 Count number of data points
- Step 2 Summarize on a tally sheet
- Step 3 Compute the range
- Step 4 Determine number of intervals
- Step 5 Compute interval width

Constructing a Histogram

- Step 6 Determine interval starting points
- Step 7 Count number of points in each interval
- Step 8 Plot the data
- Step 9 Add title and legend

Histogram

23

How to Construct a Histogram

Step 1 - Count the total number of data points

Number of yards long (+ data) and yards short (- data) that a gun crew missed its target.

-180	30	190	380	330	140	160	270	10	- 90	
- 10	30	60	230	90	120	10	50	250	180	
-130	220	170	130	- 50	- 80	180	100	110	200	
260	190	-100	150	210	140	-130	130	150	370	
160	180	240	260	- 20	- 80	30	80	240	130	
210	40	70	- 70	250	360	120	- 60	- 30	200	
50	20	30	280	410	70	- 10	20	130	170	
140	220	- 40	290	90	100	- 30	340	20	80	
210	130	350	250	- 20	230	180	130	- 30	210	
-30	80	270	320	30	240	120	100	20	70	
300	260	20	40	- 20	250	310	40	200	190	
110	-30	50	240	180	50	130	200	280	60	
260	70	100	140	80	190	100	270	140	80	
110	130	120	30	70					_	
							TOTAL = 135			
							I			

How to Construct a Histogram

Step 2 - Summarize the data on a tally sheet

	DATA	TALLY	DATA	TALLY	DATA	TALLY	DATA	TALLY	DATA	TALLY
Γ	- 180	1	-20	3	90	2	190	4	290	1
ı	- 130	2	- 10	2	100	5	200	4	300	1
ı	- 100	1	10	2	110	3	210	4	310	1
ı	- 90	1	20	5	120	4	220	2	320	1
ı	- 80	2	30	6	130	8	230	2	330	1
ı	- 70	1	40	3	140	5	240	4	340	1
l	- 60	1	50	4	150	2	250	4	350	1
l	- 50	1	60	2	160	2	260	4	360	1
l	- 40	1	70	5	170	2	270	3	370	1
l	- 30	5	80	5	180	5	280	2	380	1
4									410	1

Histogram

How to Construct a Histogram

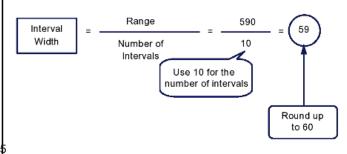
Step 3 - Compute the range for the data set

Largest value = + 410 yards past target

Smallest value = - 180 yards short of target

Range of values = 590 yards

Calculation: +410 - (-180) = 410 + 180 = 590


How to Construct a Histogram

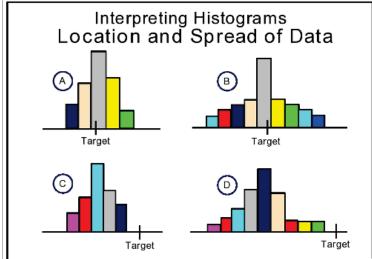
Step 4 - Determine the number of intervals required

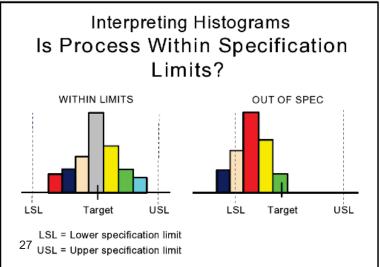
Histogram

How to Construct a Histogram

Step 5 - Compute the interval width

How to Construct a Histogram


Step 6 - Determine the starting point of each interval


Step 7 - Count the number of points in each interval

INTERVAL <u>NUMBER</u>	STARTING <u>VALUE</u>	INTERVAL <u>WIDTH</u>	ENDING <u>VALUE</u>	NUMBER OF COUNTS
1	-180	60	-120	3
2	-120	60	-060	5
3	-060	60	000	13
4	000	60	060	20
5	060	60	120	22
6	120	60	180	24
7	180	60	240	20
8	240	60	300	18
9	300	60	360	6
10	360	60	420	4
Equal to or grea STARTING			But less ENDING	

Histogram

26

Histogram

What Is a Pareto Chart?

- Bar chart arranged in descending order of height from left to right
- Bars on left relatively more important than those on right
- Separates the "vital few" from the "trivial many" (Pareto Principle)

Pareto Chart

28

Why Use a Pareto Chart?

- Breaks big problem into smaller pieces
- Identifies most significant factors
- Shows where to focus efforts
- Allows better use of limited resources

Pareto Chart

Pareto Principle

- Vilfredo Pareto (1848-1923) Italian economist
 - 20% of the population has 80% of the wealth
- adapted by Joseph Juran.
 - Remember the 80/20 rule states that approximately 80% of the problems are created by approximately 20% of the causes.

Pareto Chart

30

Constructing a Pareto Chart

Step 1 - Record the data

Step 2 - Order the data

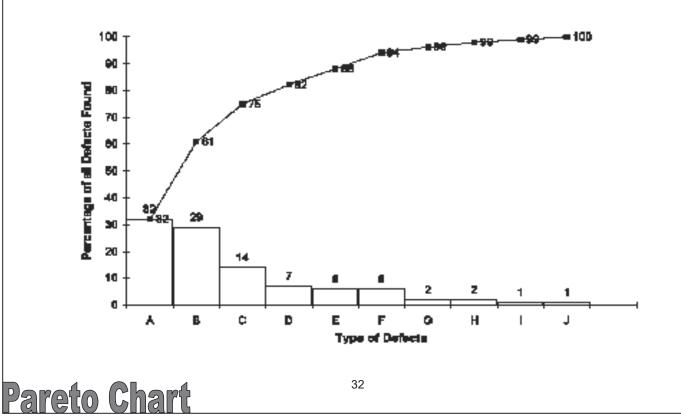
Step 3 - Label the vertical axis

Step 4 - Label the horizontal axis

Step 5 - Plot the bars

Constructing a Pareto Chart

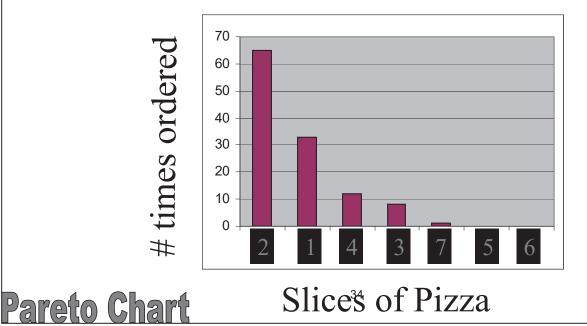
Step 6 - Add up the counts


Step 7 - Add a cumulative line

Step 8 - Add title, legend, and date

Step 9 - Analyze the diagram

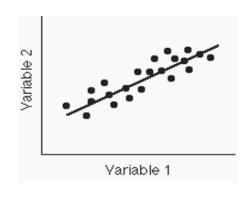
Pareto Chart



Acme Pizza

Slices	<u>Frequency</u>	<u>%</u>
0	1	0.3
1	33	13.09
2	65	25.79
3	8	3.17
4	12	4.76
5	0	0
6	0	0
7	1	0.3

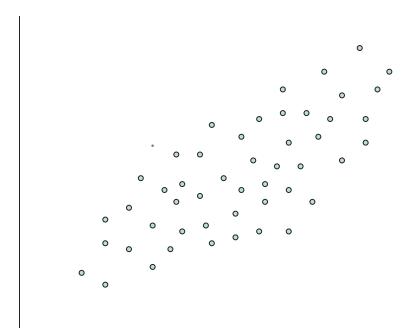
Acme Pizza


• The completed Pareto Analysis results in the following:

Scatter Diagrams

Slide 1 of 4

- Scatter Diagrams Defined
 - Scatter Diagrams are used to study and identify the possible relationship between the changes observed in two different sets of variables.


Constructing a Scatter Diagram

- 1. collect two pieces of data and create a summary table of the data.
- 2. Draw a diagram labeling the horizontal and vertical axes.
 - 3. It is common that the "cause" variable be labeled on the X axis and the "effect" variable be labeled on the Y axis.
- 4. Plot the data pairs on the diagram.
- 5. Interpret the scatter diagram for direction and strength.

Scatter Plot

36

Scatter Diagram

What Is a Control Chart?

A statistical tool used to distinguish between process variation resulting from common causes and variation resulting from special causes.

Why Use Control Charts?

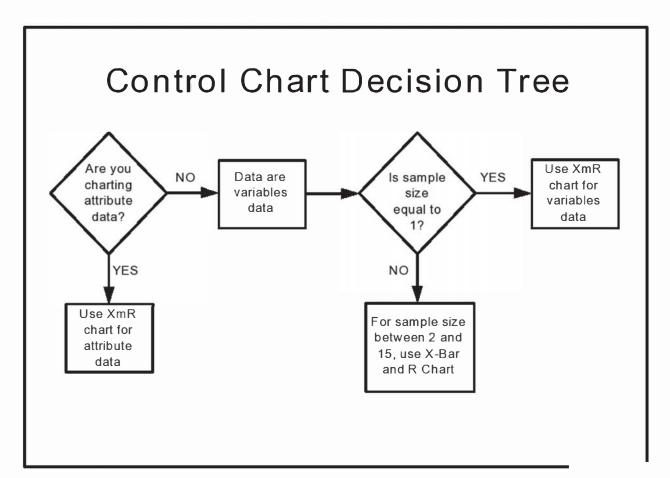
- · Monitor process variation over time
- Differentiate between special cause and common cause variation
- · Assess effectiveness of changes
- · Communicate process performance

Control Chart

What Are the Control Chart Types?

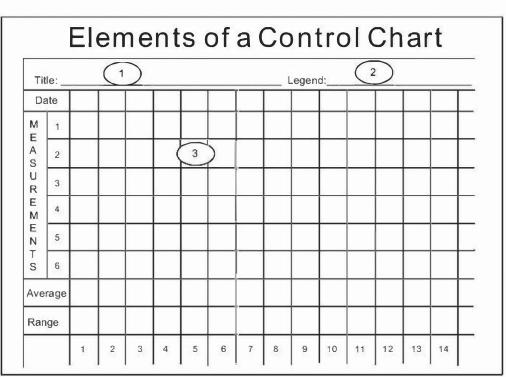
Chart types studied in this module:

X-Bar and R Chart
Individual X and Moving Range Chart


- For Variables Data
- For Attribute Data

Other Control Chart types:

X-Bar and S Chart u Chart


Median X and R Chart p Chart

c Chart np Chart

Control Chart

40

CONTROL CHART VIEWGRAPH 5

Step 12b - Constructing an XmR Chart

Upper Plot

 $UCL_X = \overline{X} + (3.144)$ (Median Moving Range)

 $LCL_X = \overline{X} - (3.144)$ (Median Moving Range)

Centerline_x = \overline{X}

Lower Plot

 $UCL_{mR} = (3.865)$ (Median Moving Range)

 $LCL_{mR} = None$

Centerline_{mR} = Median Moving Range

CONTROL CHART VIEWGRAPH 18

Control Chart

42

ZONE A

ZONE B

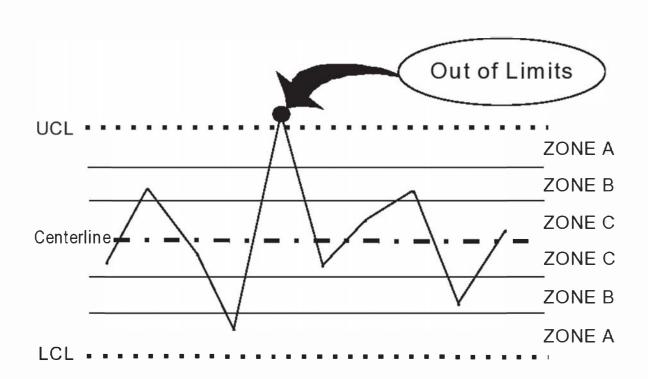
Centerline -

ZONE C

1/3 distance
from

ZONE C

Centerline to Control Limits


ZONE B

ZONE A

ZUNE

VIEWGRAPH 19

CONTROL CHART

Control Chart